Towards an Adaptive Encoding for Evolutionary Data Clustering

GECCO 2018

Cameron Shand1, Richard Allmendinger², Julia Handl², & John Keane¹

¹*School of Computer Science, University of Manchester* ²*Alliance Manchester Business School, University of Manchester*

Overview

• We investigate (using an existing state-of-the-art EC algorithm):

- We investigate (using an existing state-of-the-art EC algorithm):
	- 1. When restricting at the start, can we identify during run-time that we need to expand the search space?

- We investigate (using an existing state-of-the-art EC algorithm):
	- 1. When restricting at the start, can we identify during run-time that we need to expand the search space?
	- 2. After expansion, can we employ strategies to focus on the new space?

Evolutionary Multi-objective Clustering

Why cluster using EAs?

• Use multiple clustering criteria (fewer assumptions)

Why cluster using EAs?

- Use multiple clustering criteria (fewer assumptions)
- Flexibility in the representation of the problem

Why cluster using EAs?

- Use multiple clustering criteria (fewer assumptions)
- Flexibility in the representation of the problem
- Produces a set of results for additional analysis

∆-MOCK

• The representation of the problem is key

- The representation of the problem is key
- One example for EC is the locus-based adjacency representation
- The representation of the problem is key
- One example for EC is the locus-based adjacency representation
- Provides flexibility in representation (finds *k*)
- The representation of the problem is key
- One example for EC is the locus-based adjacency representation
- Provides flexibility in representation (finds *k*)
- Poor scaling (genotype is of length *N*)

• Data points are nodes on a graph

- Data points are nodes on a graph
- Value (*j*) in gene *xⁱ* represents edge

 $(i \rightarrow j)$

- Data points are nodes on a graph
- Value (*j*) in gene *xⁱ* represents edge $(i \rightarrow j)$

- Data points are nodes on a graph
- Value (*j*) in gene *xⁱ* represents edge $(i \rightarrow j)$

- Data points are nodes on a graph
- Value (*j*) in gene *xⁱ* represents edge $(i \rightarrow j)$
- Connected components of the graph represent clusters

• First determine the MST

- First determine the MST
- Some links are more relevant than others

- First determine the MST
- Some links are more relevant than others
- Calculate *degree of interestingness* (*DI*) for each link in MST

- First determine the MST
- Some links are more relevant than others
- Calculate *degree of interestingness* (*DI*) for each link in MST
- Restrict search to most interesting links

What is an interesting link?

$$
DI(i \rightarrow j) = \min \{nn_i(j), nn_j(i)\} + \frac{\sigma(i,j)}{\sigma_{\text{max}}}
$$

What is an interesting link?

Reduced Encoding

Reduced Encoding

Reduced Encoding

With a very low *δ*, the genotype and thus search space are large but not restrictive

With a very high *δ*, the optimisation problem can become trivial and meaningless

The Role of *δ*

- \cdot Previous work 1 shows that δ can both reduce computation time and improve performance by focusing the search
- The optimal value is different for each dataset
- To avoid tuning, we can adapt this parameter

¹Mario Garza-Fabre, Julia Handl, and Joshua Knowles. 2017. An Improved and More Scalable Evolutionary Approach to Multiobjective Clustering. IEEE Transactions on Evolutionary Computation V (2017)

Adapting *δ*

1. Identify that δ needs to change (and trigger this)

How do we adapt *δ*?

- 1. Identify that δ needs to change (and trigger this)
- 2. Explore the new space rapidly (avoiding previously explored space)

Identifying Convergence

Triggering a Change in *δ*

- Trigger method identifies if *δ* should be changed
- Hypervolume indicates stagnation: current *δ* too restrictive

If hypervolume indicates stagnation, we need to expand the search space

• Highlighted link successfully undergoes mutation

- Highlighted link successfully undergoes mutation
- Possible replacements from links to $l = 5$ nearest neighbours (inc. self-connecting)

- Highlighted link successfully undergoes mutation
- Possible replacements from links to $l = 5$ nearest neighbours (inc. self-connecting)

- Highlighted link successfully undergoes mutation
- Possible replacements from links to $l = 5$ nearest neighbours (inc. self-connecting)
- New link is randomly selected (exc. previous)

 \cdot Triggered hypermutation 1 (2 methods):

 $¹$ Helen G Cobb. 1990. An Investigation into the Use of Hypermutation as an Adaptive Operator in Genetic</sup> Algorithms Having Continuous, Time-Dependent Nonstationary Environments. Technical Report (1990)

- \cdot Triggered hypermutation 1 (2 methods):
	- 1. Hypermutation rate is applied to all genes (*THall*)
	- 2. This rate is applied only to the new genes (*THnew*)

 $¹$ Helen G Cobb. 1990. An Investigation into the Use of Hypermutation as an Adaptive Operator in Genetic</sup> Algorithms Having Continuous, Time-Dependent Nonstationary Environments. Technical Report (1990)

- \cdot Triggered hypermutation 1 (2 methods):
	- 1. Hypermutation rate is applied to all genes (*THall*)
	- 2. This rate is applied only to the new genes (*THnew*)
- Fair mutation² (*FM*)

¹ Helen G Cobb. 1990. An Investigation into the Use of Hypermutation as an Adaptive Operator in Genetic Algorithms Having Continuous, Time-Dependent Nonstationary Environments. Technical Report (1990)

²Richard Allmendinger and Joshua Knowles. 2010. Evolutionary optimization on problems subject to changes of variables. Lecture Notes in Computer Science 6239 LNCS, PART 2 (2010) 15

- \cdot Triggered hypermutation 1 (2 methods):
	- 1. Hypermutation rate is applied to all genes (*THall*)
	- 2. This rate is applied only to the new genes (*THnew*)
- Fair mutation² (*FM*)
- ∆-MOCK's initialisation routine (*RO*)

¹ Helen G Cobb. 1990. An Investigation into the Use of Hypermutation as an Adaptive Operator in Genetic Algorithms Having Continuous, Time-Dependent Nonstationary Environments. Technical Report (1990)

²Richard Allmendinger and Joshua Knowles. 2010. Evolutionary optimization on problems subject to changes of variables. Lecture Notes in Computer Science 6239 LNCS, PART 2 (2010) 15

- \cdot Triggered hypermutation 1 (2 methods):
	- 1. Hypermutation rate is applied to all genes (*THall*)
	- 2. This rate is applied only to the new genes (*THnew*)
- Fair mutation² (*FM*)
- ∆-MOCK's initialisation routine (*RO*)
- No additional changes (control method) (*CO*)

¹ Helen G Cobb. 1990. An Investigation into the Use of Hypermutation as an Adaptive Operator in Genetic Algorithms Having Continuous, Time-Dependent Nonstationary Environments. Technical Report (1990)

² Richard Allmendinger and Joshua Knowles. 2010. Evolutionary optimization on problems subject to changes of variables. Lecture Notes in Computer Science 6239 LNCS, PART 2 (2010) 15

Triggered Hypermutation

Hypermutation rate applied to all genes in reduced genotype

Hypermutation rate applied to new genes in reduced genotype

• Aim is to explore new solutions for each of the new genes

- Aim is to explore new solutions for each of the new genes
- Generate offspring where equal portion have one of the new genes set to self-connecting link

Fair Mutation

- Aim is to explore new solutions for each of the new genes
- Generate offspring where equal portion have one of the new genes set to self-connecting link
- Permits exploration of new component combinations

- Randomly select a subset of our most interesting links in the MST (bound by *δ*) to remove
- A new link is then randomly selected (similar to mutation) to replace it

Experiments

Experimental Aims

- The aim was to show whether adapting *δ* would:
	- 1. Recover performance (ARI) when starting with a restrictive *δ* value

Experimental Aims

- The aim was to show whether adapting *δ* would:
	- 1. Recover performance (ARI) when starting with a restrictive *δ* value
	- 2. When compared to ∆-MOCK, if at least similar performance could be achieved with less computation time

• Compare hypervolume trigger method with two control methods to specify when we decrease *δ*:

- Compare hypervolume trigger method with two control methods to specify when we decrease *δ*:
	- 1. Random: Random numbers signify when to change *δ*
	- 2. Interval: As above, but numbers are taken at regular intervals to ensure adequate time at each encoding length

- Compare hypervolume trigger method with two control methods to specify when we decrease *δ*:
	- 1. Random: Random numbers signify when to change *δ*
	- 2. Interval: As above, but numbers are taken at regular intervals to ensure adequate time at each encoding length
- Each of the 3 above trigger methods were run with all 5 search strategies (*THall*, *THnew*, *FM*, *RO*, *CO*) on all data 30 times

Experimental Design

Two control methods (random and interval) have exactly 5 levels of resolution

Experimental Design

Two control methods (random and interval) have exactly 5 levels of resolution Hypervolume trigger method may have fewer triggers, but cannot decrease beyond *δLow*

24

Random trigger method with synthetic data

• *RO* search strategy is the most robust and fastest of the strategies
Results Summary

- *RO* search strategy is the most robust and fastest of the strategies
- Hypervolume trigger method appears effective and conservative

Results Summary

- *RO* search strategy is the most robust and fastest of the strategies
- Hypervolume trigger method appears effective and conservative
- Adapting *δ* is less effective for smaller datasets

Conclusions and Future Work

Issues/Future Work

• Not fully adaptive: *δ* can only be decreased

Issues/Future Work

- Not fully adaptive: *δ* can only be decreased
- Mutation operator bias put some search strategies at a disadvantage

Issues/Future Work

- Not fully adaptive: *δ* can only be decreased
- Mutation operator bias put some search strategies at a disadvantage
- Effectiveness of *RO* strategy indicates crossover should be investigated

• An adaptive encoding can reduce computation and focus the search

Conclusions

- An adaptive encoding can reduce computation and focus the search
- The hypervolume can be used to identify when to expand the search space

Conclusions

- An adaptive encoding can reduce computation and focus the search
- The hypervolume can be used to identify when to expand the search space
- With an appropriate strategy, performance can be maintained even when starting with a harmfully restrictive search space

Thank you! Questions?

Mutation operator bias towards optimisation of the intracluster variance

The bias affects the quality of the Pareto front and search strategies

Intra-cluster Variance

$$
var(C) = \frac{1}{N} \sum_{c \in C} v(c) \qquad \text{where } v(c) = \sum_{i \in c} \sigma(i, \mu_c)^2
$$

Objectives

Intra-cluster Variance

$$
var(C) = \frac{1}{N} \sum_{c \in C} v(c) \qquad \text{where } v(c) = \sum_{i \in c} \sigma(i, \mu_c)^2
$$

Connectivity

$$
cnn(C) = \sum_{i=1}^{N} \sum_{l=1}^{L} \rho(i, l)
$$

where $\rho(i, l) = \begin{cases} \frac{1}{l}, & \text{if } \nexists c \in C \mid i \in c \land nn_{il} \in c; \\ 0, & \text{otherwise.} \end{cases}$

It is easy for humans to identify number of clusters (*k*) in toy data

With the exact *k*, a simple dataset is easy for methods such as KMeans

Real-world dataset example - how many clusters are there?

Some clusters are obvious to humans and most apporaches

Using all true labels, we can see that there are 11 clusters

Without this ground truth, is 11 easy to guess?

The need for multiple clustering criteria

Each criterion (e.g. intracluster variance) makes an assumption

The need for multiple clustering criteria

Even knowing $k = 3$, this dataset is impossible for this criteria

Intracluster variances minimises the distance from all data points to its centroid

Ultimately, this is minimised when *k* equals number of data points (*N*)

Optimising connectivity penalises differences in cluster assignment to each point's local neighbourhood

Objectives – Connectivity

Connectivity is minimised when $k = 1$

