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Overview

• Do we always need every decision variable for the whole
search?

• We investigate (using an existing state-of-the-art EC
algorithm):

1. When restricting at the start, can we identify during
run-time that we need to expand the search space?

2. After expansion, can we employ strategies to focus on the
new space?
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Evolutionary Multi-objective
Clustering



Why cluster using EAs?

• Use multiple clustering criteria (fewer assumptions)

• Flexibility in the representation of the problem

• Produces a set of results for additional analysis
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∆-MOCK



Representations

• The representation of the problem is key

• One example for EC is the locus-based adjacency
representation

• Provides flexibility in representation (finds k)

• Poor scaling (genotype is of length N)
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Locus-based Adjacency Representation
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Interesting Links
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• First determine the MST

• Some links are more
relevant than others

• Calculate degree of
interestingness (DI) for
each link in MST

• Restrict search to most
interesting links
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What is an interesting link?

DI(i→ j) = min
{
nni(j),nnj(i)

}
+

σ(i, j)
σmax
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What is an interesting link?

DI(i→ j) = min
{
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}
+
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Mutual nn ranking

Standardised
Euclidean distance
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Reduced Encoding
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The Extremes of δ

With a very low δ, the genotype and thus search space are
large but not restrictive
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The Extremes of δ

With a very high δ, the optimisation problem can become
trivial and meaningless
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The Role of δ

• Previous work1 shows that δ can both reduce computation
time and improve performance by focusing the search

• The optimal value is different for each dataset

• To avoid tuning, we can adapt this parameter

1Mario Garza-Fabre, Julia Handl, and Joshua Knowles. 2017. An Improved and More Scalable Evolutionary Approach
to Multiobjective Clustering. IEEE Transactions on Evolutionary Computation V (2017)

9



Adapting δ



How do we adapt δ?

1. Identify that δ needs to change (and trigger this)

2. Explore the new space rapidly (avoiding previously
explored space)
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Triggering a Change in δ

• Trigger method identifies if δ should be changed

• Hypervolume indicates stagnation: current δ too restrictive
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Decreasing δ

If hypervolume indicates stagnation, we need to expand the
search space

Components when δ = 70
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Neighbourhood-biased Mutation Operator
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Exploring the new search space

Upon changing δ, several search strategies are tested to
explore the new space

• Triggered hypermutation1 (2 methods):

1. Hypermutation rate is applied to all genes (THall)

2. This rate is applied only to the new genes (THnew)

• Fair mutation2 (FM)

• ∆-MOCK’s initialisation routine (RO)

• No additional changes (control method) (CO)
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Triggered Hypermutation

THnew

1 1 7 ? ? 10 ? 4 ? ?
Hypermutation rate
applied to new genes
in reduced genotype

THall

1 1 7 ? ? 10 ? 4 ? ?
Hypermutation rate
applied to all genes
in reduced genotype
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Fair Mutation

• Aim is to explore new solutions for each of the new genes

• Generate offspring where equal portion have one of the
new genes set to self-connecting link

• Permits exploration of new component combinations
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Reinitialised Offspring

• Randomly select a subset of our most interesting links in
the MST (bound by δ) to remove

• A new link is then randomly selected (similar to mutation)
to replace it
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Experiments



Experimental Aims

• The aim was to show whether adapting δ would:

1. Recover performance (ARI) when starting with a restrictive
δ value

2. When compared to ∆-MOCK, if at least similar performance
could be achieved with less computation time

19
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Experimental Setup

• Compare hypervolume trigger method with two control
methods to specify when we decrease δ:

1. Random: Random numbers signify when to change δ

2. Interval: As above, but numbers are taken at regular
intervals to ensure adequate time at each encoding length

• Each of the 3 above trigger methods were run with all 5
search strategies (THall, THnew, FM, RO, CO) on all data 30
times
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Experimental Design
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Datasets

Dataset
Type # Datasets # Clusters # Dimensions # Examples

Real 8 {10, 11, 12} 2 26,739 –
34,654

Synthetic 35 {10, 20, 40, 60,
80, 100, 120}

{20, 50, 100,
150, 200}

1,951 –
9,574
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Results

Random trigger method with real data
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Results

Random trigger method with synthetic data
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Results

Hypervolume trigger method with synthetic data

¢¡MOCK
(±High)

¢¡MOCK
(±Low)

CO FM THall THnew RO

Search Strategy

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ad
ju

st
ed

 R
an

d 
In

de
x 

(A
R

I)

0.0

0.2

0.4

0.6

0.8

1.0

St
an

da
ri

se
d 

Ti
m

e 
pe

r 
R

un

Time
Worse
Equivalent
Better
Reference

24



Results Summary

• RO search strategy is the most robust and fastest of the
strategies

• Hypervolume trigger method appears effective and
conservative

• Adapting δ is less effective for smaller datasets
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Conclusions and Future Work



Issues/Future Work

• Not fully adaptive: δ can only be decreased

• Mutation operator bias put some search strategies at a
disadvantage

• Effectiveness of RO strategy indicates crossover should be
investigated
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Conclusions

• An adaptive encoding can reduce computation and focus
the search

• The hypervolume can be used to identify when to expand
the search space

• With an appropriate strategy, performance can be
maintained even when starting with a harmfully restrictive
search space
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Thank you! Questions?
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Mutation Bias

Mutation operator bias towards optimisation of the
intracluster variance

0 200 400 600 800 1000 1200
Connectivity

0
.2

0
.4

0
.6

0
.8

1
1
.2

1
.4

In
tr

a
c
lu

s
te

r 
V

a
ri

a
n
c
e

CO

[0.8, 1.0]
[0.6, 0.8)
[0.4, 0.6)
[0.2, 0.4)
[0.0, 0.2)
Best ARI

0 200 400 600 800 1000 1200
Connectivity

0
.2

0
.4

0
.6

0
.8

1
1
.2

1
.4

In
tr

a
c
lu

s
te

r 
V

a
ri

a
n
c
e

THAll

28



Mutation Bias

The bias affects the quality of the Pareto front and search
strategies
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Objectives

Intra-cluster Variance

var(C) = 1
N

∑
c∈C

v(c) where v(c) =
∑
i∈c

σ(i, µc)2
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Objectives

Intra-cluster Variance

var(C) = 1
N

∑
c∈C

v(c) where v(c) =
∑
i∈c

σ(i, µc)2

Connectivity

cnn(C) =
N∑
i=1

L∑
l=1

ρ(i, l)

where ρ(i, l) =

 1
l , if ∄ c ∈ C | i ∈ c ∧ nnil ∈ c;
0, otherwise.
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Clustering Subjectivity - A Toy Example

It is easy for humans to identify number of clusters (k) in toy
data
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Clustering Subjectivity - A Toy Example

With the exact k, a simple dataset is easy for methods such as
KMeans
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Clustering Subjectivity - A Real Example

Real-world dataset example - how many clusters are there?
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Clustering Subjectivity - A Real Example

Even in 2D there’s uncertainty
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Clustering Subjectivity - A Real Example

Some clusters are obvious to humans and most apporaches
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Clustering Subjectivity - A Real Example

Using all true labels, we can see that there are 11 clusters
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Clustering Subjectivity - A Real Example

Without this ground truth, is 11 easy to guess?
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The need for multiple clustering criteria

Each criterion (e.g. intracluster variance) makes an assumption
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The need for multiple clustering criteria

Even knowing k = 3, this dataset is impossible for this criteria
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Objectives – Intracluster Variance

Intracluster variances minimises the distance from all data
points to its centroid
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Objectives – Intracluster Variance

Ultimately, this is minimised when k equals number of data
points (N)
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Objectives – Connectivity

Optimising connectivity penalises differences in cluster
assignment to each point’s local neighbourhood
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Objectives – Connectivity

Connectivity is minimised when k = 1
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